The State of the USMNT Goalkeepers by Bill Reno

The latest drama to break in the American goalkeeping scene was centered squarely on Jesse Gonzalez. After a will-he-won’t-he back and forth that is only rivaled by Pam Beesly and Jim Halpert, Gonzalez has officially tied to the US Men’s National Team. The lovestory dates back to 2015, when he first played for Mexico’s U20s, then received an invite to a USMNT camp, only to drop out of the camp, admitting he was leaning towards Mexico, then ultimately switching to the US last month for his final decision.

It’s been a whirlwind for Gonzalez over the last two years but chances are he isn’t going to be competing for the starting spot until after the 2018 World Cup. Simply with his exclusion from this year’s Gold Cup roster it seems like Gonzalez’s time with the national team will start farther down the line. Hypothetically he could be a Julian Green-esque addition but for a player who has only recently started playing consistently for an MLS side, it’s most likely next cycle. Looking at the rest of the group, only a handful of goalkeepers are truly in the running for a trip to Russia.

Read More

“Skilsinho?” Redefining what a successful dribble is. by Kevin Shank

Skill moves are one of the many great things about soccer. Watching the players twist and turn with the ball seemingly attached to their feet not only makes for fun highlight reels, but losing a defender also gives an advantage to the attacking team. As exciting as it is to see a player nutmeg another, it is equally disappointing to see him take one too many touches or misplace the following pass, squandering the effort put into the successful dribble.

As a Philadelphia Union fan, I have seen many times where Ilsinho uses his Brazilian footwork to dance around defenders, gaining the nickname “Skilsinho” from fans. Early in the 2016 season Jim Curtin lauded Ilsinho’s skills saying, “He catches the eye. He is a great 1v1 player, beat guys off the dribble which is a great skill to have.” And Curtin is not necessarily wrong since Ilsinho’s dribble success rate of 44.19% is just above the league average (43.37%) and better than the likes of players like David Villa (42.55%). So does this mean that Ilsinho is a more effective dribbler than David Villa? Well, not quite since Ilsinho often falls into that category of players I described above who will dazzle then disappoint with his footwork.

Read More

Player Passing Efficiency in MLS 2017 by Jared Young

To anyone who's watched soccer, it's obvious that all passes are not created equal. Some are routine. Some are exceptional. The usual simple statistic that divides the completed ones by the attempted ones is missing quite a lot of context. Last year, to help solve that problem, ASA debuted a passing efficiency model designed to take into account the difficulty of the pass, similar to how expected goals is developed. Over 300,000 passes from 2015 were used to build three different models, and this year those models were calibrated to match 2017 performance. Ted Knutson over at Statsbomb just revealed a similar model build on 20,000,000 passes from Opta's dataset, which calls into question whether or not our 300,000 sample size is sufficient, but alas, all the MLS passes in the history of MLS wouldn't reach a third of that larger sample, so here we are.

This year we've broken out the model by individual player, which makes things pretty interesting because you can see how different players take different levels of risk depending on which part of the field they are on. For example, Philadelphia Union right back Keegan Rosenberry has an expected pass completion percentage of 57.9 percent in his own defensive third. His main competitor Ray Gaddis has 67.7 percent in the same area. They both have actual completion percentages near their expected level. Gaddis makes higher percentage passes when controlling the ball in a defensive position. That may not tell you which player is more effective but it does indicate that Rosenberry is more likely to send the ball up field, while Ray is going to look for a closer teammate.

Here's a link to the table with the latest results, but it also has it's own tab on our menu, titled "Player xPassing". Thanks to the work of Kevin Minkus (@KevinMinkus) and Drew Olsen (@DrewJOlsen) these stats will be updated regularly, along with all our other statistics. 

Read More

Mapping Defensive Actions: A Spatial Analysis of Where Teams Focus Their Efforts by DMP

Every team has its own “style”. Some teams bunker, some teams high-press, some clog the middle, some work the wings. Where they defend is a major part of what defines their style. The recipe for a team’s defensive shape is one part tactics and 11 parts players on the field. Certain players seem to naturally gravitate their efforts to particular areas, be it the wing they’re assigned to, their preferred foot, their favorite partner-in-crime or how they’re instructed to approach the opposition. In the end, the action happens in consistent general areas of the field, but in complex patterns.

One could take an Opta map from any particular game and examine the defensive spatial patterns. You can see the clusters of defensive actions as well as voids where a team hardly seems to find themselves defending at all. But that’s just one game. We all know that teams are forced to adapt their style of play to their opposition, and whatever flukey circumstances played out in that game might not be totally indicative of a team’s overall style. What would really be telling is the aggregate over multiple games.

Read More

MLS Capology: Constructing the Ideal MLS Roster by Jared Young

Major League Soccer is thankfully becoming more and more transparent every year, and as they peel back the curtain fans can understand (and challenge) the strategy of roster compositions of their favorite teams. Ultimately the printed rules allows fans to become more intimate with their teams. This year MLS published rosters that allocated players between the senior roster, supplemental and reserve roster positions. They also shared details about General Allocation Money (GAM). At this point it’s worth the effort to take stock of the various roster rules and funding agreements between the team and the league to determine some paths to building an MLS team.

Read More

MLS Goalkeepers or: How I Learned to Stop Worrying and Love the BOB by Bill Reno

It seems like every week I see multiple goalkeepers launch a hopeful goal kick to a teammate close to the sideline, only to overhit it by about twenty yards. While fans may appreciate the invitation to be a part of the game, they’d rather not see their goalkeeper concede possession so easily. MLS goalkeeping standards aren’t the same as La Liga, but surely there is some standard, right?
 
I accessed the secret scrolls of passing statistics dating back to the 2015 season to see just how often MLS goalkeepers launch a ball straight out of bounds. For this exercise, we’ll be using the stat BOB, which stands for for “Ball Out of Bounds” because having a stat acronym with two O’s would jump ASA’s rating from G to PG and I couldn't bring myself to be the sole reason for that. We don't have the data to separate punts, throws, passes, and goal kicks but I think this still addresses the topic at hand. As such, the below BOB pulls in all 'keeper distribution, be it a goal kick launched towards midfield or a toss to a nearby teammate a foot away.
 
Over a total of 1587 BOB in 1622 games puts the average BOB/gm for a goalkeeper at .978.

Read More

NYCFC, Expected Goals, and Fantasy Sports by Harrison Crow

It’s no surprise that expected goals is finally being talked about in the fantasy sports realm. This is great and it’s really entertaining to me because, as you might expect, it’s where we at ASA often use it the most. It’s an incredibly useful tool that can provide some quick tools for judging players when needed.

Now, let’s talk about how we’re using it.

Expected goals is, as we have well documented over the years, a measure of the opportunities and chances created by a player and their team. Porting that to the fantasy soccer realm there are terms and conditions on this that we need to consider.

Expected goals isn't a one-stat-fits-all for all metrics. Rather it’s a sum of many parts. Looking over at NYCFC and the fact that they’re killing it with the highest expected goal differential is great! But—realizing how they’re doing is even more important as that speaks to the sustainability of their success.

Read More

Shots Not Taken: Exploring the propensity of teams to shoot from good positions by DMP

Do you ever find yourself yelling “JUST SHOOT THE BALL!” at the TV screen? Of course you do, you watch soccer! Sometimes it can be maddening to see your star striker make his/her way into the box, only to futz around with a pass or dribble. At times it doesn’t even matter whether that pass or dribble was successful. Does it seem like your team does it particularly bad? You’re probably not alone.

Psychologists will be quick to point out a thing called negativity bias. Basically, we probably all think our team dilly-dallies in the box more than others because we remember it better. The existence of this bias, by the way, is supported by a convincing amount of experimental evidence. But it begs the question, who is empirically more likely to shoot when they can?

Read More

SuperDraft or Super Daft, Part 2: Who is good at drafting? by Kevin Minkus

Inspired by recent NFL draft analytics articles, I wrote an article developing an expected value curve for the MLS SuperDraft. Using that curve as a baseline for how well draftees in a given slot should do, we can compare that to how well they actually do, across the picks for a given coach or team. This then tells us which coaches and teams have done an especially good or an especially poor job evaluating NCAA prospects over the last few years, by looking at who exceeds and who underperforms expectations.

Here’s how things look at the team level from 2007 to 2015. (I should note that I’m only going up to 2015 because the metric I’m using to measure value is the total number of minutes played by a player in his first two seasons.)

Read More